SEMICONDUCTORS

Type 2N5109 Geometry 1007 Polarity NPN Qual Level: JAN - JANTXV

Features:

- VHF-UHF amplifier silicon transistor.
- Housed in TO-39 case.
- Also available in chip form using the 1007 chip geometry.
- The Min and Max limits shown are per MIL-PRF-19500/398 which Semicoa meets in all cases.

Data Sheet No. 2N5109

Generic Part Number: 2N5109

REF: MIL-PRF-19500/453

Request Quotation

Maximum Ratings

$T_{\rm C} = 25^{\circ} \rm C \ unless$	otherwise	specified
10 20 0 01 110000	041011100	opoolinou

Rating	Symbol	Rating	Unit	
Collector-Emitter Voltage	V _{CEO}	20	V	
Collector-Base Voltage	V _{CBO}	40	V	
Emitter-Base Voltage	V _{EBO}	3.0	V	
Collector Current, Continuous	Ι _C	0.4	A	
Power Dissipation at 25°C ambient Derate above 25°C	PT	1.0 5.71	W mW/ºC	
Operating Junction Temperature	TJ	-65 to +200	°C	
Storage Temperature	T _{STG}	-65 to +200	°C	

Electrical Characteristics

$T_{\rm C} = 25^{\circ}$ C unless otherwise spec
--

OFF Characteristics	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage $I_{C} = 100 \ \mu A$	V _{(BR)CBO}	40		V
Collector-Emitter Breakdown Voltage $I_{C} = 5 \text{ mA}$	V _{(BR)CEO}	20		V
Collector-Emitter Breakdown Voltage $I_c = 5 \text{ mA}, R_2 = 10 \text{ ohms}$	V _{(BR)CER}	40		V
Emitter-Base Breakdown Voltage $I_E = 100 \ \mu A$	V _{(BR)EBO}	3.0		V
Collector-Emitter Cutoff Current $V_{CE} = 15 V$	I _{CEO1}		20	μA
Collector-Emitter Cutoff Current $V_{CE} = 15 \text{ V}, \text{ T}_{C} = +175^{\circ}\text{C}$	I _{CEO2}		5.0	mA

ON Characteristics	Symbol	Min	Max	Unit
Forward Current Transfer Ratio				
$I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 15 V (pulsed)	h _{FE1}	40	150	
$I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 5.0 V (pulsed)	h _{FE2}	15		
Collector-Emitter Saturation Voltage				
$I_{\rm C}$ = 100 mA, $I_{\rm B}$ = 50 mA (pulsed)	V _{CE(sat)1}		0.5	V dc

Small Signal Characteristics	Symbol	Min	Max	Unit
Magnitude of Common Emitter, Small Signal, Short Circuit Current Transfer Ratio				
$I_C = 25 \text{ mA}, V_{CE} = 15 \text{ V}, \text{ f} = 200 \text{ MHz}$		5.0	10	
$I_{C} = 25 \text{ mA}, V_{CE} = 15 \text{ V}, \text{ f} = 200 \text{ MHz}$	hFE	6.0	11	
$I_{C} = 25 \text{ mA}, V_{CE} = 15 \text{ V}, f = 200 \text{ MHz}$		5.0	10.5	
Open Circuit Output Capacitance $V_{CB} = 28 \text{ V}, I_E = 0, 100 \text{ kHz} < f < 1 \text{ MHz}$	C _{OBO}		3.5	pF
Power Gain (Narrow Band) Current $V_{CC} = 15 \text{ V}, I_C = 50 \text{ mA}, f = 200 \text{ MHz}$	G_PE	11	3.5	dB
Cross Modulation $V_{CC} = 15 \text{ V}, I_C = 50 \text{ mA}, f = 200 \text{ MHz}$ 54 dBm V outpuot	cm		-57	dB
Noise Figure $V_{CC} = 15 \text{ V}, \text{ I}_{C} = 50 \text{ mA}, \text{ f} = 200 \text{ MHz}$	NF		3.5	dB
Voltage Gain (Wideband) $V_{CC} = 15 \text{ V}, I_C = 50 \text{ mA}, f = 50 \text{ to } 216 \text{ MHz}$	G _{VE}	11		dB