

Symbol	Characteristic	Max		Units	
		J309 / J310	*MMBFJ309		
P _D	Total Device Dissipation Derate above 25°C	350 2.8	225 1.8	mW mW/∘C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W	

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

J309 / J310 / MMBFJ309 / MMBFJ310

ã 1997 Fairchild Semiconductor Corporation

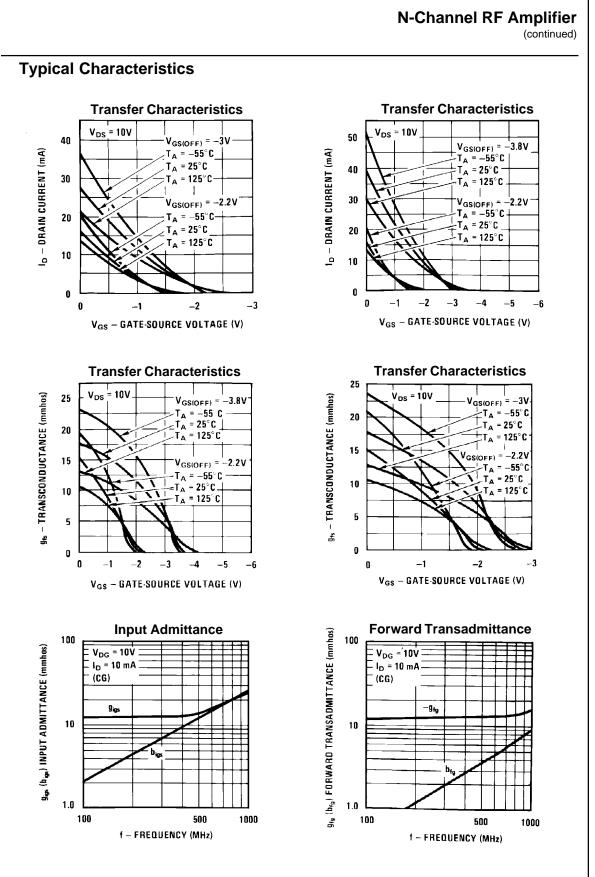
Symbol

 V_{DS}

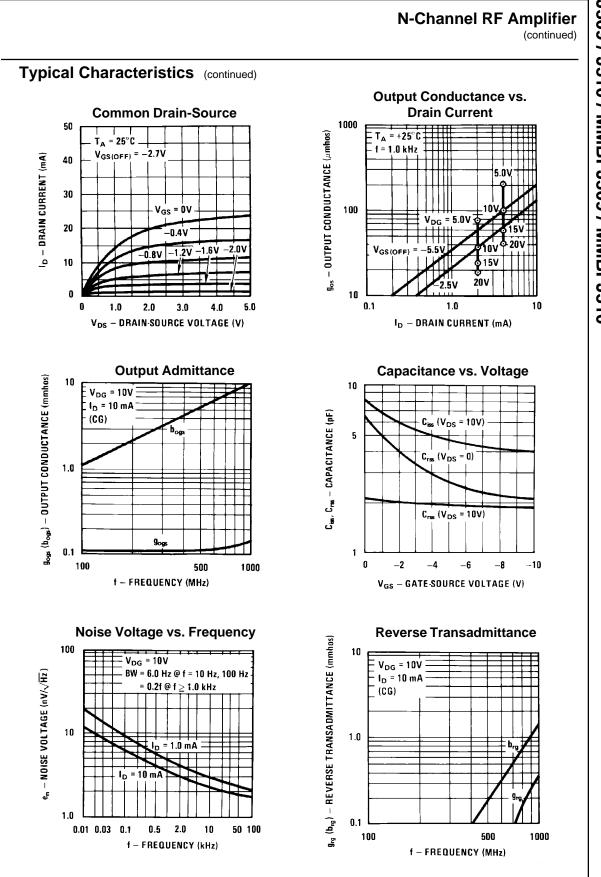
 V_{GS}

 I_{GF}

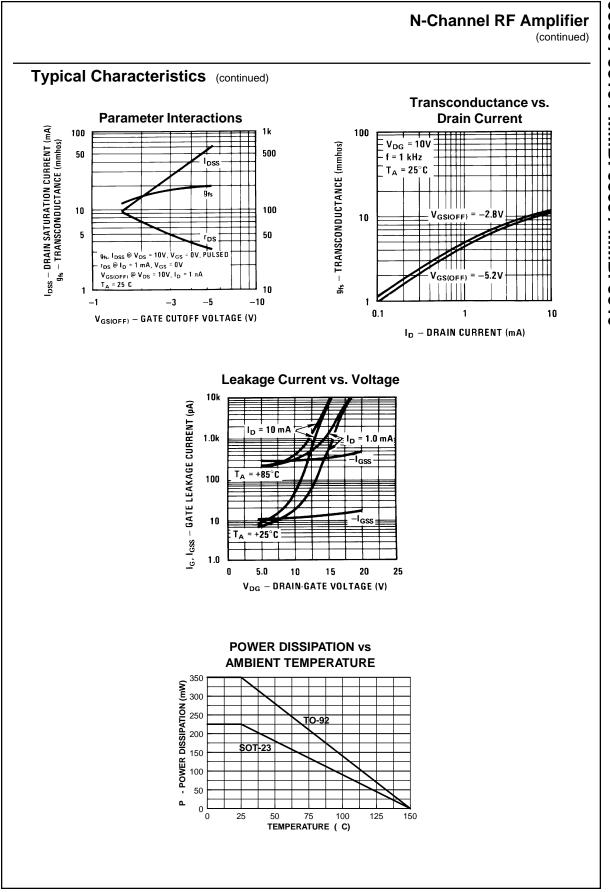
T_J,T_{stg}

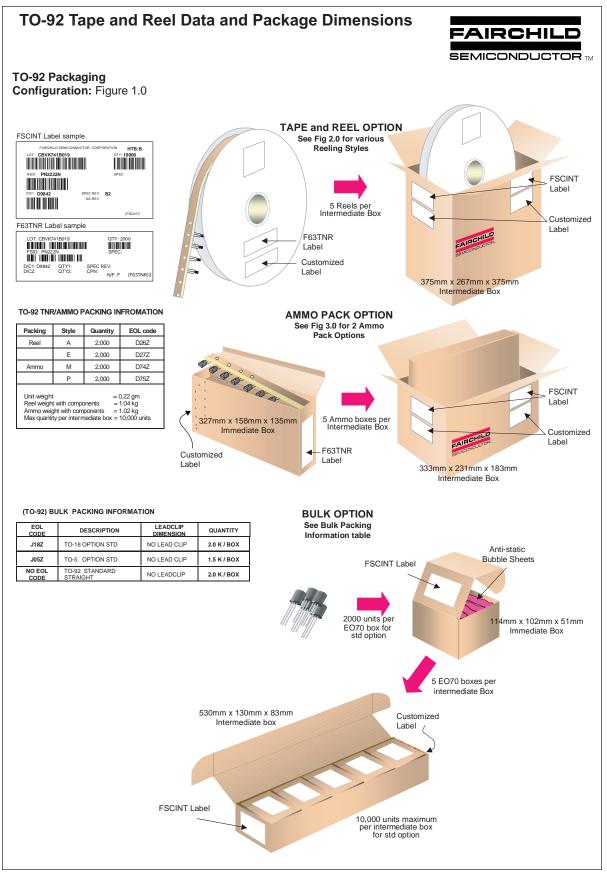

NOTES:

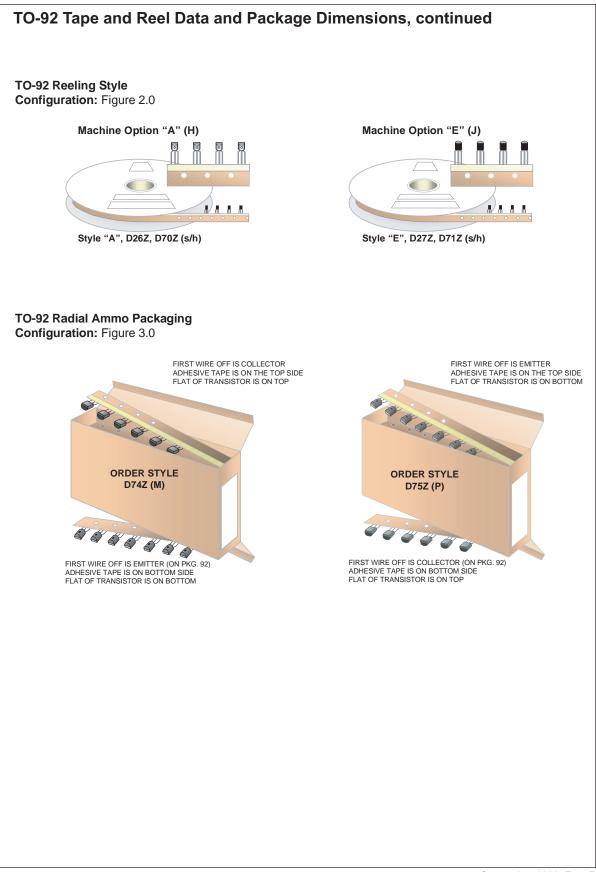
N-Channel RF Amplifier (continued)

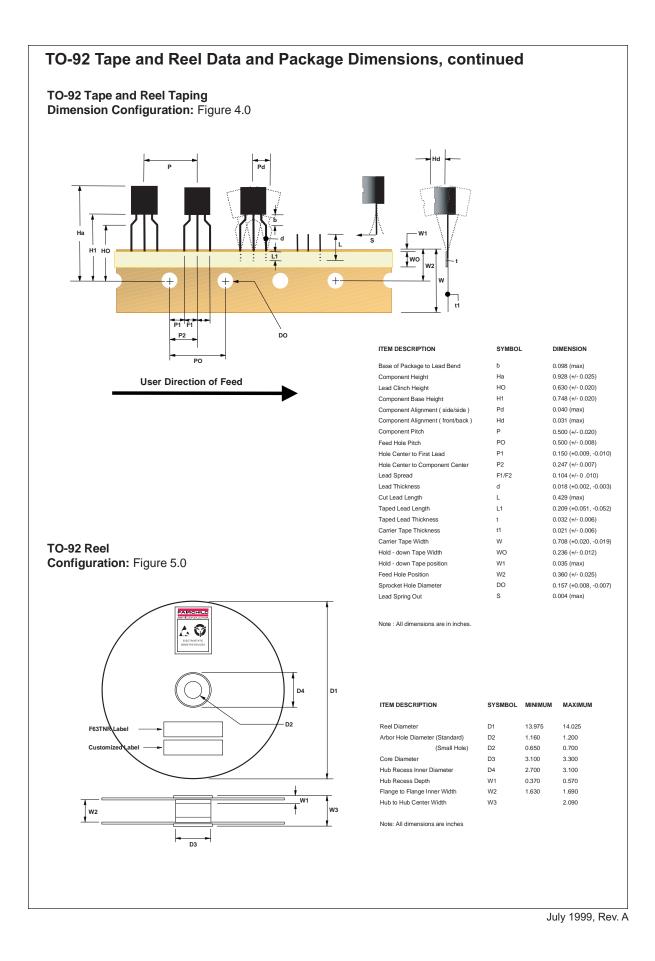

-	
ontinued)	

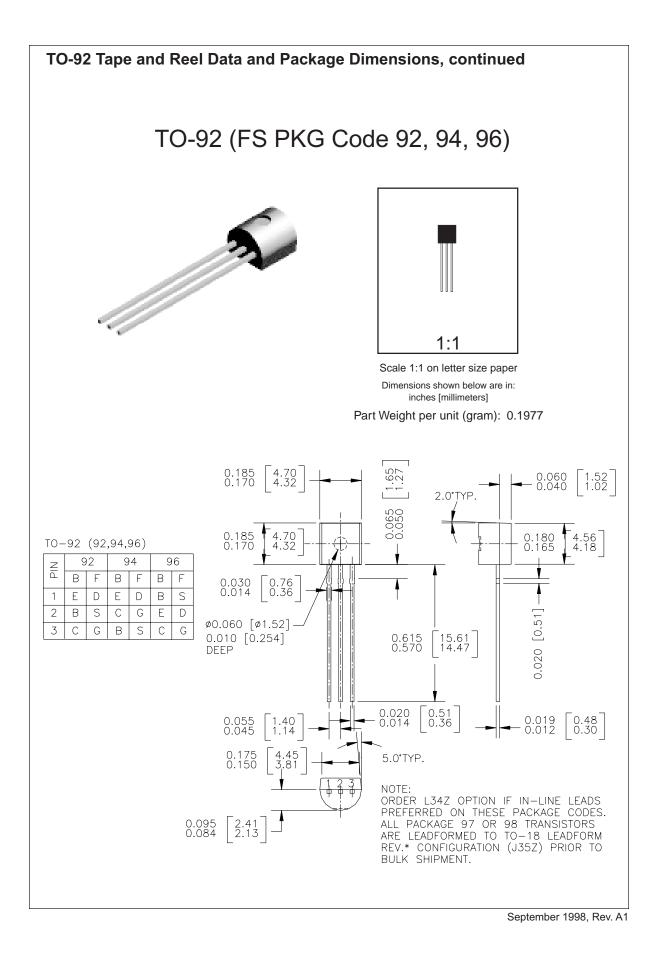
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
			-			
OFF CHA	RACTERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -1.0 \ \mu A, \ V_{DS} = 0$	- 25			V
I _{GSS}	Gate Reverse Current	V _{GS} = - 15 V, V _{DS} = 0 V _{GS} = - 15 V, V _{DS} = 0, T _A = 125°C			- 1.0 - 1.0	nA μA
$V_{\text{GS(off)}}$	Gate-Source Cutoff Voltage	$\label{eq:VGS} \begin{array}{l} V_{GS} = -\ 15\ V,\ V_{DS} = 0,\ T_A = 125^\circ C \\ \hline V_{DS} = 10\ V,\ I_D = 1.0\ nA \qquad \mbox{J309} \\ \hline \mbox{J310} \end{array}$	- 1.0 - 2.0		- 4.0 - 6.5	V V
ON CHAP	RACTERISTICS Zero-Gate Voltage Drain Current*	V _{DS} = 10 V, V _{GS} = 0 J309 J310	12 24		30 60	mA mA
V _{GS(f)}	Gate-Source Forward Voltage	$V_{DS} = 0, I_G = 1.0 \text{ mA}$			1.0	V
				0 5		no no la c
		J310		0.5		mmhos
Re _(yos)	Common-Source Output	J310 V _{DS} = 10, I _D = 10 mA, f = 100 MHz		0.5 0.25		
ζ- <i>γ</i>	Common-Source Output Conductance Common-Gate Power Gain					
G _{pg}	Conductance Common-Gate Power Gain Common-Source Forward	$V_{DS} = 10, I_{D} = 10 \text{ mA}, f = 100 \text{ MHz}$		0.25		mmhos dB
G _{pg} Re ₍ y _{fs)}	Conductance Common-Gate Power Gain	$V_{DS} = 10$, $I_D = 10$ mA, f = 100 MHz $V_{DS} = 10$, $I_D = 10$ mA, f = 100 MHz		0.25 16		mmhos dB mmhos
G _{pg} Re ₍ y _{fs)} Re ₍ y _{ig)}	Conductance Common-Gate Power Gain Common-Source Forward Transconductance	$V_{DS} = 10$, $I_D = 10$ mA, f = 100 MHz $V_{DS} = 10$, $I_D = 10$ mA, f = 100 MHz $V_{DS} = 10$, $I_D = 10$ mA, f = 100 MHz	10,000	0.25 16 12	20,000	mmhos dB mmhos mmhos μmhos
G _{pg} Re(Vfs) Re(Vig) gfs	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward	$\begin{split} V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ J309 \end{split}$		0.25 16 12		mmhos dB mmhos mmhos μmhos
G _{pg} Re(Vfs) Re(Vig) gfs gos	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output	$\begin{split} V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ J309 \\ J310 \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz} \end{split}$		0.25 16 12	18,000	mmhos dB mmhos mmhos μmhos μmhos μmhos
G _{pg} Re(Vfs) Re(Vig) gfs gos gfg	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance	$\begin{split} V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 1.0 \ \text{MHz} \\ \textbf{J309} \\ \textbf{J310} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz} \\ \textbf{J309} \\ \textbf{J310} \\ V_{DS} &= 10, \ I_D = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz} \\ \textbf{J309} \\ \textbf{J310} \end{split}$		0.25 16 12 12 13,000	18,000	mmhos dB mmhos mmhos μmhos μmhos μmhos μmhos μmhos
G _{pg} Re(yfs) Re(yfg) gfs gos gfg gog	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance Common-Gate Forward Conductance	$\begin{split} & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J310} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J310} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J310} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J310} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J310} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J310} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J300} \\ & \mathbf{J309} \\ & \mathbf{J309} \\ & \mathbf{J309} \\ & \mathbf{J300} \\ & \mathbf{J30}$		0.25 16 12 12 13,000 12,000 100	18,000	mmhos dB mmhos μmhos μmhos μmhos μmhos μmhos μmhos
Gpg Re(Yfs) Re(yig) gfs gos gfg Gog Cdg	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance Common-Gate Forward Conductance Common-Gate Forward Conductance Common-Gate Forward Conductance	$\begin{split} & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & J309 \\ & J310 \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & J309 \\ & J310 \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & J309 \\ & J310 \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & J309 \\ & J310 \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & J309 \\ & J310 \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & J309 \\ & J310 \\$		0.25 16 12 12 13,000 12,000 100 150	18,000	mmhos dB mmhos μmhos μmhos μmhos μmhos μmhos μmhos
Re(yos) Gpg Re(yfs) Re(yig) gfs gos gfg Gog Cdg Csg NF	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance Common-Source Output Conductance Common-Gate Forward Conductance Common-Gate Output Conductance Drain-Gate Capacitance	$\begin{split} & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J310} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J310} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J310} \\ & V_{DS} = 10, I_D = 10 \text{ mA}, f = 1.0 \text{ kHz} \\ & \mathbf{J309} \\ & \mathbf{J310} \\ & V_{DS} = 0, V_{GS} = -10, f = 1.0 \text{ MHz} \end{split}$		0.25 16 12 12 13,000 12,000 100 150 2.0	18,000 150 2.5	mmhos dB mmhos mmhos μmhos μmhos μmhos μmhos μmhos pF

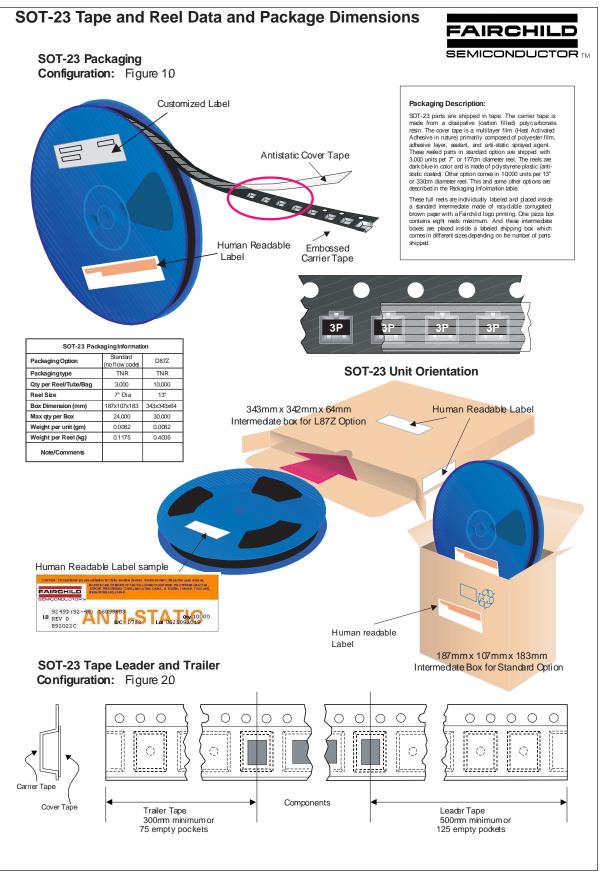

*Pulse Test: Pulse Width \pm 300 ms, Duty Cycle \pm 2.0%


J309 / J310 / MMBFJ309 / MMBFJ310

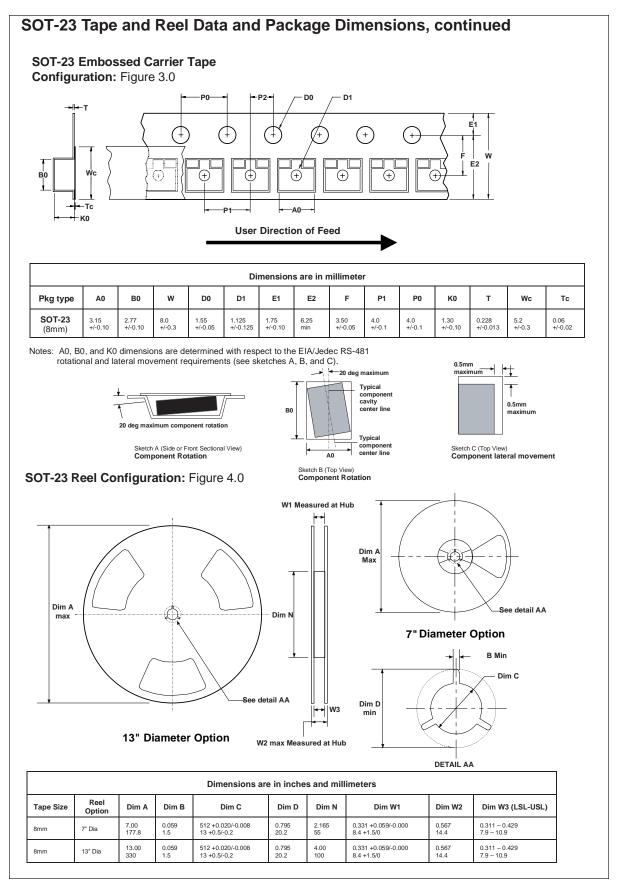

J309 / J310 / MMBFJ309 / MMBFJ310

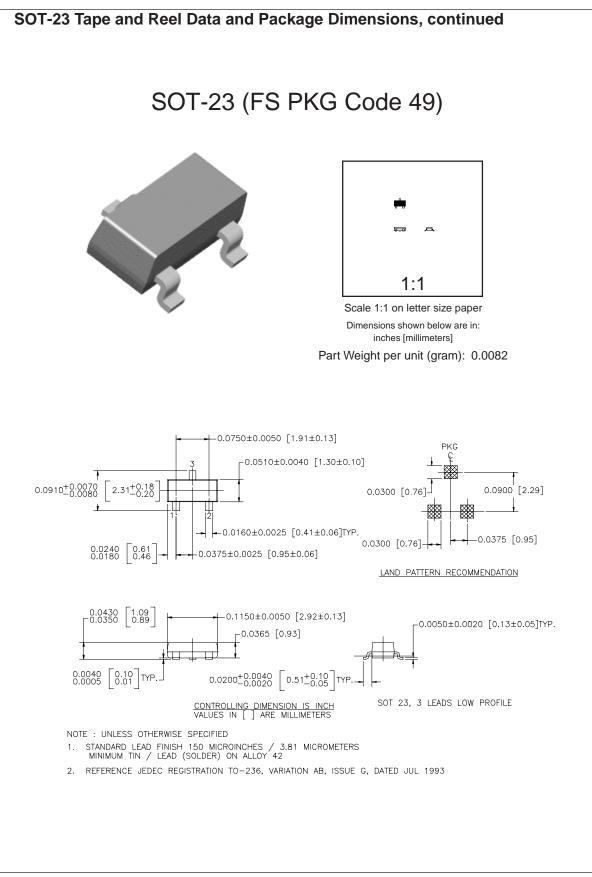



J309 / J310 / MMBFJ309 / MMBFJ310



September 1999, Rev. B





September 1999, Rev. C

September 1999, Rev. C

September 1998, Rev. A1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		